Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612488

ABSTRACT

Effective management of chronic kidney disease (CKD), a major health problem worldwide, requires accurate and timely diagnosis, prognosis of progression, assessment of therapeutic efficacy, and, ideally, prediction of drug response. Multiple biomarkers and algorithms for evaluating specific aspects of CKD have been proposed in the literature, many of which are based on a small number of samples. Based on the evidence presented in relevant studies, a comprehensive overview of the different biomarkers applicable for clinical implementation is lacking. This review aims to compile information on the non-invasive diagnostic, prognostic, and predictive biomarkers currently available for the management of CKD and provide guidance on the application of these biomarkers. We specifically focus on biomarkers that have demonstrated added value in prospective studies or those based on prospectively collected samples including at least 100 subjects. Published data demonstrate that several valid non-invasive biomarkers of potential value in the management of CKD are currently available.


Subject(s)
Renal Insufficiency, Chronic , Humans , Prospective Studies , Biomarkers , Renal Insufficiency, Chronic/diagnosis , Fibrosis , Kidney
2.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542491

ABSTRACT

Effective management of glomerular kidney disease, one of the main categories of chronic kidney disease (CKD), requires accurate diagnosis, prognosis of progression, assessment of therapeutic efficacy, and, ideally, prediction of drug response. Multiple biomarkers and algorithms for the assessment of specific aspects of glomerular diseases have been reported in the literature. Though, the vast majority of these have not been implemented in clinical practice or are not available on a global scale due to limited access, missing medical infrastructure, or economical as well as political reasons. The aim of this review is to compile all currently available information on the diagnostic, prognostic, and predictive biomarkers currently available for the management of glomerular diseases, and provide guidance on the application of these biomarkers. As a result of the compiled evidence for the different biomarkers available, we present a decision tree for a non-invasive, biomarker-guided diagnostic path. The data currently available demonstrate that for the large majority of patients with glomerular diseases, valid biomarkers are available. However, despite the obvious disadvantages of kidney biopsy, being invasive and not applicable for monitoring, especially in the context of rare CKD etiologies, kidney biopsy still cannot be replaced by non-invasive strategies.


Subject(s)
Kidney , Renal Insufficiency, Chronic , Humans , Disease Progression , Kidney/pathology , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/pathology , Kidney Glomerulus/pathology , Biomarkers , Glomerular Filtration Rate
3.
Clin Kidney J ; 17(2): sfad296, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38313685

ABSTRACT

Background: Focal segmental glomerulosclerosis (FSGS) is divided into genetic, primary (p), uncertain cause, and secondary (s) forms. The subclasses differ in management and prognosis with differentiation often being challenging. We aimed to identify specific urine proteins/peptides discriminating between clinical and biopsy-proven pFSGS and sFSGS. Methods: Sixty-three urine samples were collected in two different centers (19 pFSGS and 44 sFSGS) prior to biopsy. Samples were analysed using capillary electrophoresis-coupled mass spectrometry. For biomarker definition, datasets of age-/sex-matched normal controls (NC, n = 98) and patients with other chronic kidney diseases (CKDs, n = 100) were extracted from the urinary proteome database. Independent specificity assessment was performed in additional data of NC (n = 110) and CKD (n = 170). Results: Proteomics data from patients with pFSGS were first compared to NC (n = 98). This resulted in 1179 biomarker (P < 0.05) candidates. Then, the pFSGS group was compared to sFSGS, and in a third step, pFSGS data were compared to data from different CKD etiologies (n = 100). Finally, 93 biomarkers were identified and combined in a classifier, pFSGS93. Total cross-validation of this classifier resulted in an area under the receiving operating curve of 0.95. The specificity investigated in an independent set of NC and CKD of other etiologies was 99.1% for NC and 94.7% for CKD, respectively. The defined biomarkers are largely fragments of different collagens (49%). Conclusion: A urine peptide-based classifier that selectively detects pFSGS could be developed. Specificity of 95%-99% could be assessed in independent samples. Sensitivity must be confirmed in independent cohorts before routine clinical application.

4.
Nephrol Dial Transplant ; 39(3): 453-462, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-37697716

ABSTRACT

BACKGROUND AND HYPOTHESIS: Specific urinary peptides hold information on disease pathophysiology, which, in combination with artificial intelligence, could enable non-invasive assessment of chronic kidney disease (CKD) aetiology. Existing approaches are generally specific for the diagnosis of single aetiologies. We present the development of models able to simultaneously distinguish and spatially visualize multiple CKD aetiologies. METHODS: The urinary peptide data of 1850 healthy control (HC) and CKD [diabetic kidney disease (DKD), immunoglobulin A nephropathy (IgAN) and vasculitis] participants were extracted from the Human Urinary Proteome Database. Uniform manifold approximation and projection (UMAP) coupled to a support vector machine algorithm was used to generate multi-peptide models to perform binary (DKD, HC) and multiclass (DKD, HC, IgAN, vasculitis) classifications. This pipeline was compared with the current state-of-the-art single-aetiology CKD urinary peptide models. RESULTS: In an independent test set, the developed models achieved 90.35% and 70.13% overall predictive accuracies, respectively, for the binary and the multiclass classifications. Omitting the UMAP step led to improved predictive accuracies (96.14% and 85.06%, respectively). As expected, the HC class was distinguished with the highest accuracy. The different classes displayed a tendency to form distinct clusters in the 3D space based on their disease state. CONCLUSION: Urinary peptide data present an effective basis for CKD aetiology differentiation using machine learning models. Although adding the UMAP step to the models did not improve prediction accuracy, it may provide a unique visualization advantage. Additional studies are warranted to further validate the pipeline's clinical potential as well as to expand it to other CKD aetiologies and also other diseases.


Subject(s)
Glomerulonephritis, IGA , Renal Insufficiency, Chronic , Vasculitis , Humans , Biomarkers , Diagnosis, Differential , Artificial Intelligence , Glomerulonephritis, IGA/complications , Liquid Biopsy/adverse effects , Peptides , Proteomics
5.
Int J Mol Sci ; 24(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298105

ABSTRACT

Biomarker development, improvement, and clinical implementation in the context of kidney disease have been a central focus of biomedical research for decades. To this point, only serum creatinine and urinary albumin excretion are well-accepted biomarkers in kidney disease. With their known blind spot in the early stages of kidney impairment and their diagnostic limitations, there is a need for better and more specific biomarkers. With the rise in large-scale analyses of the thousands of peptides in serum or urine samples using mass spectrometry techniques, hopes for biomarker development are high. Advances in proteomic research have led to the discovery of an increasing amount of potential proteomic biomarkers and the identification of candidate biomarkers for clinical implementation in the context of kidney disease management. In this review that strictly follows the PRISMA guidelines, we focus on urinary peptide and especially peptidomic biomarkers emerging from recent research and underline the role of those with the highest potential for clinical implementation. The Web of Science database (all databases) was searched on 17 October 2022, using the search terms "marker *" OR biomarker * AND "renal disease" OR "kidney disease" AND "proteome *" OR "peptid *" AND "urin *". English, full-text, original articles on humans published within the last 5 years were included, which had been cited at least five times per year. Studies based on animal models, renal transplant studies, metabolite studies, studies on miRNA, and studies on exosomal vesicles were excluded, focusing on urinary peptide biomarkers. The described search led to the identification of 3668 articles and the application of inclusion and exclusion criteria, as well as abstract and consecutive full-text analyses of three independent authors to reach a final number of 62 studies for this manuscript. The 62 manuscripts encompassed eight established single peptide biomarkers and several proteomic classifiers, including CKD273 and IgAN237. This review provides a summary of the recent evidence on single peptide urinary biomarkers in CKD, while emphasizing the increasing role of proteomic biomarker research with new research on established and new proteomic biomarkers. Lessons learned from the last 5 years in this review might encourage future studies, hopefully resulting in the routine clinical applicability of new biomarkers.


Subject(s)
Proteomics , Renal Insufficiency, Chronic , Humans , Proteomics/methods , Renal Insufficiency, Chronic/metabolism , Kidney/metabolism , Peptides/urine , Biomarkers/urine
6.
BMC Nephrol ; 24(1): 179, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37337151

ABSTRACT

BACKGROUND: Thrombotic microangiopathy (TMA) is a potentially organ and life-threatening condition affecting patients with multiple myeloma (MM). Cases of proteasome inhibitor-induced TMA and specifically carfilzomib-induced TMA have been rarely reported and standards for diagnostic workup and treatment are not available. CASE PRESENTATION: We describe a case of a male MM patient under salvage therapy including proteasome inhibitor carfilzomib following chemotherapy and autologous stem cell transplantation. The patient then developed acute kidney injury with clinical and laboratory signs of TMA. Hemodialysis became necessary and treatment with plasma exchange was initiated followed by therapy with C5 complement inhibitor eculizumab which led to amelioration of kidney function and hemolysis parameters. CONCLUSION: We report a patient with suspected proteasome inhibitor-induced secondary thrombotic microangiopathy that has been successfully treated with plasma exchange and eculizumab, a monoclonal antibody targeting complement factor C5.


Subject(s)
Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Thrombotic Microangiopathies , Humans , Male , Multiple Myeloma/complications , Multiple Myeloma/drug therapy , Plasma Exchange , Proteasome Inhibitors/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation, Autologous , Thrombotic Microangiopathies/chemically induced , Thrombotic Microangiopathies/diagnosis
7.
Lancet Digit Health ; 4(10): e727-e737, 2022 10.
Article in English | MEDLINE | ID: mdl-36057526

ABSTRACT

BACKGROUND: The SARS-CoV-2 pandemic is a worldwide challenge. The CRIT-CoV-U pilot study generated a urinary proteomic biomarker consisting of 50 peptides (COV50), which predicted death and disease progression from SARS-CoV-2. After the interim analysis presented for the German Government, here, we aimed to analyse the full dataset to consolidate the findings and propose potential clinical applications of this biomarker. METHODS: CRIT-CoV-U was a prospective multicentre cohort study. In eight European countries (Austria, France, Germany, Greece, North Macedonia, Poland, Spain, and Sweden), 1012 adults with PCR-confirmed COVID-19 were followed up for death and progression along the 8-point WHO scale. Capillary electrophoresis coupled with mass spectrometry was used for urinary proteomic profiling. Statistical methods included logistic regression and receiver operating characteristic curve analysis with a comparison of the area under curve (AUC) between nested models. Hospitalisation costs were derived from the care facility corresponding with the Markov chain probability of reaching WHO scores ranging from 3 to 8 and flat-rate hospitalisation costs adjusted for the gross per capita domestic product of each country. FINDINGS: From June 30 to Nov 19, 2020, 228 participants were recruited, and from April 30, 2020, to April 14, 2021, 784 participants were recruited, resulting in a total of 1012 participants. The entry WHO scores were 1-3 in 445 (44%) participants, 4-5 in 529 (52%) participants, and 6 in 38 (4%) participants; and of all participants, 119 died and 271 had disease progression. The odds ratio (OR) associated with COV50 in all 1012 participants for death was 2·44 (95% CI 2·05-2·92) unadjusted and 1·67 (1·34-2·07) when adjusted for sex, age, BMI, comorbidities, and baseline WHO score; and for disease progression, the OR was 1·79 (1·60-2·01) when unadjusted and 1·63 (1·41-1·91) when adjusted (p<0·0001 for all). The predictive accuracy of the optimised COV50 thresholds was 74·4% (71·6-77·1%) for mortality (threshold 0·47) and 67·4% (64·4-70·3%) for disease progression (threshold 0·04). When adjusted for covariables and the baseline WHO score, these thresholds improved AUCs from 0·835 to 0·853 (p=0·033) for death and from 0·697 to 0·730 (p=0·0008) for progression. Of 196 participants who received ambulatory care, 194 (99%) did not reach the 0·04 threshold. The cost reductions associated with 1 day less hospitalisation per 1000 participants were million Euro (M€) 0·887 (5-95% percentile interval 0·730-1·039) in participants at a low risk (COV50 <0·04) and M€2·098 (1·839-2·365) in participants at a high risk (COV50 ≥0·04). INTERPRETATION: The urinary proteomic COV50 marker might be predictive of adverse COVID-19 outcomes. Even in people with mild-to-moderate PCR-confirmed infections (WHO scores 1-4), the 0·04 COV50 threshold justifies earlier drug treatment, thereby potentially reducing the number of days in hospital and associated costs. FUNDING: German Federal Ministry of Health.


Subject(s)
COVID-19 , Adult , Biomarkers , COVID-19/diagnosis , Cohort Studies , Disease Progression , Humans , Pilot Projects , Prospective Studies , Proteomics , SARS-CoV-2
8.
Proteomes ; 9(4)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34941814

ABSTRACT

Defective complement activation has been associated with various types of kidney disease. This led to the hypothesis that specific urine complement fragments may be associated with kidney disease etiologies, and disease progression may be reflected by changes in these complement fragments. We investigated the occurrence of complement fragments in urine, their association with kidney function and disease etiology in 16,027 subjects, using mass spectrometry based peptidomics data from the Human Urinary Proteome/Peptidome Database. Twenty-three different urinary peptides originating from complement proteins C3, C4 and factor B (CFB) could be identified. Most C3-derived peptides showed inverse association with estimated glomerular filtration rate (eGFR), while the majority of peptides derived from CFB demonstrated positive association with eGFR. Several peptides derived from the complement proteins C3, C4 and CFB were found significantly associated with specific kidney disease etiologies. These peptides may depict disease-specific complement activation and could serve as non-invasive biomarkers to support development of complement interventions through assessing complement activity for patients' stratification and monitoring of drug impact. Further investigation of these complement peptides may provide additional insight into disease pathophysiology and could possibly guide therapeutic decisions, especially when targeting complement factors.

9.
Article in English | MEDLINE | ID: mdl-34747355

ABSTRACT

SUMMARY: Drinking fruit juice is an increasingly popular health trend, as it is widely perceived as a source of vitamins and nutrients. However, high fructose load in fruit beverages can have harmful metabolic effects. When consumed in high amounts, fructose is linked with hypertriglyceridemia, fatty liver and insulin resistance. We present an unusual case of a patient with severe asymptomatic hypertriglyceridemia (triglycerides of 9182 mg/dL) and newly diagnosed type 2 diabetes mellitus, who reported a daily intake of 15 L of fruit juice over several weeks before presentation. The patient was referred to our emergency department with blood glucose of 527 mg/dL and glycated hemoglobin (HbA1c) of 17.3%. Interestingly, features of diabetic ketoacidosis or hyperosmolar hyperglycemic state were absent. The patient was overweight with an otherwise unremarkable physical exam. Lipase levels, liver function tests and inflammatory markers were closely monitored and remained unremarkable. The initial therapeutic approach included i.v. volume resuscitation, insulin and heparin. Additionally, plasmapheresis was performed to prevent potentially fatal complications of hypertriglyceridemia. The patient was counseled on balanced nutrition and detrimental effects of fruit beverages. He was discharged home 6 days after admission. At a 2-week follow-up visit, his triglyceride level was 419 mg/dL, total cholesterol was 221 mg/dL and HbA1c was 12.7%. The present case highlights the role of fructose overconsumption as a contributory factor for severe hypertriglyceridemia in a patient with newly diagnosed diabetes. We discuss metabolic effects of uncontrolled fructose ingestion, as well as the interplay of primary and secondary factors, in the pathogenesis of hypertriglyceridemia accompanied by diabetes. LEARNING POINTS: Excessive dietary fructose intake can exacerbate hypertriglyceridemia in patients with underlying type 2 diabetes mellitus (T2DM) and absence of diabetic ketoacidosis or hyperosmolar hyperglycemic state. When consumed in large amounts, fructose is considered a highly lipogenic nutrient linked with postprandial hypertriglyceridemia and de novo hepatic lipogenesis (DNL). Severe lipemia (triglyceride plasma level > 9000 mg/dL) could be asymptomatic and not necessarily complicated by acute pancreatitis, although lipase levels should be closely monitored. Plasmapheresis is an effective adjunct treatment option for rapid lowering of high serum lipids, which is paramount to prevent acute complications of severe hypertriglyceridemia.

10.
Proteomes ; 9(3)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34287333

ABSTRACT

Non-invasive urinary peptide biomarkers are able to detect and predict chronic kidney disease (CKD). Moreover, specific urinary peptides enable discrimination of different CKD etiologies and offer an interesting alternative to invasive kidney biopsy, which cannot always be performed. The aim of this study was to define a urinary peptide classifier using mass spectrometry technology to predict the degree of renal interstitial fibrosis and tubular atrophy (IFTA) in CKD patients. The urinary peptide profiles of 435 patients enrolled in this study were analyzed using capillary electrophoresis coupled with mass spectrometry (CE-MS). Urine samples were collected on the day of the diagnostic kidney biopsy. The proteomics data were divided into a training (n = 200) and a test (n = 235) cohort. The fibrosis group was defined as IFTA ≥ 15% and no fibrosis as IFTA < 10%. Statistical comparison of the mass spectrometry data enabled identification of 29 urinary peptides with differential occurrence in samples with and without fibrosis. Several collagen fragments and peptide fragments of fetuin-A and others were combined into a peptidomic classifier. The classifier separated fibrosis from non-fibrosis patients in an independent test set (n = 186) with area under the curve (AUC) of 0.84 (95% CI: 0.779 to 0.889). A significant correlation of IFTA and FPP_BH29 scores could be observed Rho = 0.5, p < 0.0001. We identified a peptidomic classifier for renal fibrosis containing 29 peptide fragments corresponding to 13 different proteins. Urinary proteomics analysis can serve as a non-invasive tool to evaluate the degree of renal fibrosis, in contrast to kidney biopsy, which allows repeated measurements during the disease course.

12.
Biochim Biophys Acta Gene Regul Mech ; 1862(1): 71-83, 2019 01.
Article in English | MEDLINE | ID: mdl-30468780

ABSTRACT

Hypoxia-inducible factors (HIFs) play a key role in the adaptation to low oxygen by interacting with hypoxia response elements (HREs) in the genome. Cellular levels of the HIF-2α transcription factor subunit influence the histopathology and clinical outcome of neuroblastoma, a malignant childhood tumor of the sympathetic ganglia. Expression of the Wilms tumor gene, WT1, marks a group of high-risk neuroblastoma. Here, we identify WT1 as a downstream target of HIF-2α in Kelly neuroblastoma cells. In chromatin immunoprecipitation assays, HIF-2α bound to a HRE in intron 3 of the WT1 gene, but not to another predicted HIF binding site (HBS) in the first intron. The identified element conferred oxygen sensitivity to otherwise hypoxia-resistant WT1 and SV40 promoter constructs. Deletion of the HBS in the intronic HRE by genome editing abolished WT1 expression in hypoxic neuroblastoma cells. Physical interaction between the HRE and the WT1 promoter in normoxic and hypoxic Kelly cells was shown by chromosome conformation capture assays. These findings demonstrate that binding of HIF-2α to an oxygen-sensitive enhancer in intron 3 stimulates transcription of the WT1 gene in neuroblastoma cells by hypoxia-independent chromatin looping. This novel regulatory mechanism may have implications for the biology and prognosis of neuroblastoma.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Neuroblastoma/pathology , WT1 Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/physiology , Cell Line, Tumor , Chromatin Immunoprecipitation , Gene Expression Regulation, Neoplastic , Humans , Hypoxia/metabolism , Introns , Promoter Regions, Genetic , Response Elements , Transcriptional Activation , WT1 Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...